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Abstract-A mathematical formulation is presented for the description of the average mechanical
properties of structural masonry. The conceptual approach is based on the framework recently
outlined by Pietruszczak (1991). An element of structural masonry is regarded as a composite
medium consisting of the brick matri)( intercepted by the sets of head and bed joints. The former are
considered as aligned. uniformly dispersed weak inclusions. whereas the latter represent continuous
planes ofweakness. A general three-dimensional formulation is provided and is subsequently applied
to estimate the average macroscopic properties in the elastic range and to investigate the conditions
at failure. An e)(tensive numerical study is performed.

1. INTRODUCTION

Over the last few decades the research in structural masonry has concentrated mainly on
the experimental testing of brickworks. The results of those investigations have provided
valuable information used to establish empirically or semi-empirically based methodologies
for the design of masonry structures. There have been only a few isolated attempts to
estimate the properties ofmasonry in a rigorous analytical manner [e.g. Pande ('/ al. (1989)].
It is quite apparent however. that an adelJuate description of these properties is essential
for the analysis of complex boundary value problems involving masonry structures.

The mechanical response of masonry can be analyzed by employing the finite clement
technique. By using the physical and the actual geometric properties of brick units and
mortar. the numerical solution to a class of selected problems can be obtained (Ali and
Page. 1989; Afshari and Kaldjian. 1989). There arc however serious limitations to this
approach. Firstly. the actual geometry of the brickwork may result in ill-conditioning of
the algebraic system and/or instability of the numerical solution. Secondly. the approach
becomes quite impractical in the context of large-scale masonry structures comprising a
very large number of brick units subjected to a three-dimensional state of stress.

This paper presents an alternative approach for the description of the behaviour of
structural masonry. The methodology followed is based on the framework outlined by
Pietruszczak (1991). A typical element of brickwork is regarded as a structured/composite
medium for which the average macroscopic properties can be uniquely identified. Thus. a
representative volume of the "material" considered is assumed to consist of a number of
brick units intercepted by two orthogonal families of joints. The presence of discrete sets
of mortar joints results in a strong directional dependence of the average mechanical
properties. The estimate of these properties is the main interest here. The paper is written
in the following sequence. First. a general three-dimensional formulation is provided. The
average constitutive relation is derived by employing the assumption that the head joints
represent a set of aligned weak inclusions and the bed joints form continuous planes of
weakness. The formulation is then applied to establish the average clastic properties of the
system. Later, the phenomenon of a progressive failure of the brickwork is investigated.
An extensive numerical study is carried out: the performance of the framework is verified
for a series of biaxial compression-tension and compression-eompression tests.

2. MACROSCOPIC RESPONSE OF STRUCTURAL MASONRY; MATHEMATICAL
FORMULATION

Consider a typical element of structural masonry. i.e. a brick panel. as shown
schematically in Fig. la. subjected to a uniformly distributed load. On the macroscale, the
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Fig, 1. (a) Geometry of a structural masonry panel; (h) ~lediul11 (I); (e) Medium (n intcrcepted
by bed joints (after I'ietruslczak. (<)<)1),

panel can be regarded as a two-phase composite consisting of brick units interspersed by
two orthogonal sets ofjoints filled with mortar. [n order to describe the average mechanical
properties of the system, it is convenient to address the influence of head (vertical) and bed
joints separately, i.e. invoke the concept of a superimposed medium.

Referring to Fig. I b, consider first the brick matrix with a family of head joints (a so
called medium (I». The head joints can be treated as aligned. uniformly dispersed weak
inclusions embodied in the matrix. The average properties of the medium (I) can be
represented by a constitutive relation

(I)

where (1.(1) - {U'(I) (1'(1) (1'(1) (1.(1) (1'(1) (1'(II}T and i(l) = {em e(l) e(1) .,;(1) ,;(1) .,;(I)}T are the
- II, 22. 33, 12, I), 13 II' 22. 33, I 12. I I h 123

volume averages of stress/strain rates in (I). [n particular. the homogenized medium (I)
can be regarded as an orthotropic elastic-brittle material. [n such a case. the components
of [D( IJ] can be estimated from Eshelby's (1957) solution to an ellipsoidal inclusion problem
combined with Mori-Tanaka's (1973) mean-field theory. The details concerning the speci
fication of [D( II] matrix and the criterion for an elastic-brittle transition are discussed later
in this paper.

The entire masonry panel can now be represented by a homogenized medium (I)
stratified by a family of bed joints (2), Fig. Ie. The bed joints run continuously through the
panel and form the weakest link in the microstructure of the system. In particular. the bed
joints can be regarded as an elastoplastic medium with mechanical properties defined by

(2)
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Assuming that both constituents (I) and (2) exist simultaneously and are perfectly bonded,
the overall stress/strain rate averages aand i can be derived from the averaging rule (Hill,
1963)

i = 'lli(H+'lzi(Zl

a = 'lla' I) + 'lza(Z)

where 'IS are the volume fractions of both constituents,

h t
'11 = h+t; '12 = h+t

(3)

(4)

(5)

and Iz and t represent the spacing and the thickness of bed joints. respectively.
The assumption of perfect bonding between the constituents and the equilibrium

requirements provides additional kinematic and static constraints

where

[15*]i( H = [15*]i(2l

[<>]0'( II = [15]0'\2)

[

I 0 0 0 0 0] [0
[e)*] = 0 0 I 0 0 0 ; [15] = 0

000 0 I 0 0

I 0 0 0 0]
o 0 I 0 0 .

00001

(6)

(7)

(8)

The constraints (6) and (7). as applied to averages. are rigorous provided t« h. Their
validity can easily be verified from the Eshelby's equivalence principle.

It is evident that the field equations listed above (eqns (1)-(4). together with (6) and
(7) provide a set of 30 equations for 30 unknowns. e.g. a, 0'( I), 0'( 21, Ii( It and i(2). Thus. the
problem is mathematically determinate. It should be noted that the total number of
unknowns can be reduced by introducing certain simplifying assumptions pertaining to the
kinematics of bed joints. The formulation discussed by Pietruszczak (1991) for example,
has been derived by expressing the local deformation field in bed joints in terms of velocity
discontinuities rather than strain rates i(2). thereby reducing the number of unknowns to
27.

In order to solve the problem, i.e. provide an explicit form of the average constitutive
relation. it is convenient to introduce the following identity

where

(9)

DUl
23

D (il
4J

Dfil
6)

D(il
24

D(il
44

D(i l
64

D~~]
Dhl

46 •

D(ll
66

(10)

Utilizing eqns (9) and (6). the static constraint (7) can now be expressed in the form

(II)

Given the representation (II) and the decomposition (3), the strain rates in both constituents
can be uniquely related to i. In view of kinematic constraints (6), the set of equations (3)
reduces to

(12)
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Substitution ofeqn (12) in eqn (II) results, after some simple algebra. in

(13)

where

Thus, in view of eqn (3), the following relationship is obtained

t( I) = [Sdt

where

I 0 0 0 0 0

511 512 51) 514 5 15 516

[Sd =
0 0 I 0 0 0

521 522 52) 524 525 526
0 0 0 0 I 0

531 5J2 5)) 5J4 535 536

(15)

(16)

and the components of [51 arc defined by eqn (14).
The strain rates in bed joints can be expressed in a similar functional form to that of

eqn (15). After substituting eqn (15) in eqn (3) and solving for &(2), one obtains

where

(
I '11 )[S2] = --[1)- -[Sd

'12 '12

( 17)

( 18)

and [J] represents the unit matrix (6 x 6).
Finally, the overall stress rate averages ti can be derived from eqn (4). Substitution of

eqns (15) and (17) in eqn (4), results in

( 19)

The above equation represents the average constitutive relation for the entire composite
system. As expected, the macroscopic behaviour depends on the mechanical properties of
both constituents and their volume contributions. In the following sections the proposed
mathematical framework is investigated in detail. First, the average clastic properties of the
masonry are established and subsequently the phenomenon of progressive failure of the
material microstructure is addressed.

3. AVERAGE ELASTIC PROPERTIES OF STRUCTURAL MASONRY

Assume that all constituents in the microstructure remain elastic and determine the
average elastic properties of the composite. Consider first the medium (I), i.e. brick matrix
with uniformly dispersed head joints in the form of monotonically aligned rectangular
parallelepipeds. If both the bricks and the joints are isotropic then the medium (I), as a
whole, will become orthotropic. In this case, the constitutive matrix, eqn (I). assumes the
form
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Dfl) D(I) D ll ) 0 0 0II 12 13

DIll DOl Dfl) 0 0 012 22 23

DClI Dill D(I) 0 0 0[DI I)] = 13 2J 33

0 0 0 D(I) 0 044

0 0 0 0 Dill 0ss
0 0 0 0 0 DII)

66

535

(20)

The nine independent elastic constants are functions of the properties of both constituents
as well as the cross-sectional aspect ratio and the volume fraction of the inclusions. Recently,
Zhao and Weng (1990) have identified the average elastic constants of an orthotropic
composite reinforced with aligned elliptic cylinders. The estimates are based on Eshelby's
solution to the ellipsoidal inclusion problem combined with Mori-Tanaka's mean-field
theory (to deal with the finite concentration of inclusions). The results reported by Zhao
and Weng can be applied to estimate the average elastic properties of medium (I), viz. eqn
(20). The algebraic expressions defining the elastic constants are quite complex and will not
be cited here. The reader is referred, in this respect, directly to the original publication.

Assume now that the bed joints, eqn (2), are considered as isotropic, i.e.

DIZ) D 12) D(2) 0 0 0II 12 n
D

I21 DI21 D f21 0 0 012 II 12
D(21 D(2 ) D'Z) 0 0 0

[0(2)1 = 12 IZ II
D~~ = DI,z,I-DW. (21)

0 0 0 D(2) 0 044

0 0 0 0 Dnl 044

() () 0 0 0 D(2)
44

Given both representations (2) and (21) the matrices [ElIl] and [FlO), defined in eqn (10),
reduce to

[D'"
DIll

~] ;
[~"

0

DU
I' 2J 22

[E
lIl

] = ~ 0 [fill] = ~ DOl (22)44

0 0

[D'"
D(2)

~] ;
[D'"

0
o ]

12 12 II

[EIZ)] = ~ 0 [F(21] = ~ D(2) o . (23)44

0 0 D~~

Substituting the above representations in eqn (14), after simple algebraic manipulations
one obtains

(m 21-DW)/a; :-DW/a; (DW-DW)/a; 0 0 0
111

[.5] = 0 0 0 :-D~~/b 0 0 (24)
"2

0 0 0 0 0 :-D~~/c
'12

where

a = D~12' + '!2. D(2l· b - Dill + '!2. DI2l. C - D(ll + ,.,. DI21• 1 I , - 44 44 , - 66 - 44.
'12 "2 '12

Thus, given the definitions (20), (21) and (24), the components of the macroscopic consti-
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tutive matrix can be determined from eqn (19). The composite panel is an orthotropic body
(on a macroscale) and the nine independent components of [D] matrix are defined as

ID" =:: .------.~.-- .
-- I I

- D','} + D\'"
I'f I -- '1:: '

(25)

Numericalexamples
In order to illustrate the mathematical framework outlined in this section. some

numerical simulations were carried out. The objective was to investigate the inl1uencc of
the joint thickness and the clastic properties of the constituents (brick and mortar) on the
avemgc clastic response of the masonry panel. Both constituents were assumed to be
isotropic and the elastic constants (Young's modulus, E and Poisson's ratio. v) were selt:l:tcd
after Pandc et al. (1989) as,

Eb = 1.I X 104 N/mm 2
; Vb = 0.25; Vm = 0.20

where the subscripts band m refer to brick and mortar, respectively. The brick dimensions
were taken as: II =:: 75 mm, I = 225 mm.

Figure 2 shows the variation of nine elastic constants (normalized with respect to
properties of the brick) of the masonry panel as a function of the thickness, I, of thejoints.
The simulations were carried out for different EblEm ratios ranging from 1.1 to II. It is
evident from the figure that an increase in the joint thickness results in a progressive
reduction of average elastic moduli (E and G), whereas an increase in the Young's modulus
of the mortar causes a corresponding increase in these values.

The contribution of the head joints to the average macroscopic properties of the
masonry panel is investigated further in Figs 3 and 4. The results shown in Fig. 3 correspond
to the case in which the head joints are treated as continuous vertical planes of weakness
(x -+ 0, where x is the cross-sectional aspect ratio of the head joints, Zhao and Weng. 1990).
In other words, the masonry panel is regarded as an elastic medium intercepted by two
mutually orthogonal families ofcontinuous joints. The latter approximation was employed
by Pande et al. (1989) to estimate the average elastic properties of masonry through a direct
strain energy approach. By comparing the results with those in Fig. 2. it is evident that the
predictions are very close and only the values of Ell and G JI are underestimated. Thus.
the treatment of head joints as weakness planes provides a reasonable approximation in
the context of the elastic response of the system.

Finally, Fig. 4 shows the most conservative prediction corresponding to the case when
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the head joints are infilled. i.e. are regarded as voids (Em -+ 0). The values of the overall
moduli (E and G) are. in general. reduced as compared to those in Fig. 2. in particular Ell

and G, I are affected. It is clear however. that the masonry structure with head joints infilled
is still capable of resisting the external load.

~ DESCRIPTION OF PROGRESSIVE FAILURE OF STRCCTURAL MASONRY

The collapse of a masonry panel can result either from the failure of the brick matrix.
which is usually of a brittle nature. or from the ductile brittle failure of the bed joints. The
head joints represent a less significant link in the pand microstructure. in the sense that
their local failure will not induce the collapse on a macroscale. Thus. it seems reasonable
to regard the medium (I) as an orthotropic elastic body. eqn (20), and impose an appropriate
criterion for the elastic-brittle transition in the bricks. At the same time, the bed joints can
be treated as an e1astoplastic strain-hardening material.

Consider first the homogenized medium (I). In order to determine the stress rates in
the bricks, express the averaging procedure, eqns (3) and (4), as

alii = t(a' +t(a"

i l
II = t(i' + t(i".

(26)

(27)

Here. the prime and double-prime superscripts refer to brick matrix and mortar (head)
joints respectively. whereas tiS arc the volume fractions of both constituents

I( = I ; t( =
1+1 1+1

where 1represents the spacing of the hcad joints.
With all the constituents remaining clastic, i.e.

the stress decomposition, eqn (26), yields

Thus, substituting eqn (27) in eqn (30) and rearranging

(2X)

(30)

f.' = [S'li' II ; [S'J = 1,([D'J-[D"!l,I([D1,1l-[D"J)
'I

(31 )

so that the stress rates in the brick matrix are dclined as

a' = [D'li' = [D'j[S'If.l'l . (32)

The failure criterion for the bricks can be expressed in terms of a path-independent condition

F(u') == () (33)

in which F = 0 is a scalar-valued function of the basic invariants of u', In particular, the
functional form proposed by Pietruszczak cl al. (1988) may be used

(34)

where I is the first stress invariant. J ~ is the second invariant of the stress deviator and () is
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the angle measure of the third deviatoric stress invariant J h

541

1 . _ I ( 3J3 J 3 ).
() = J Sin - -2- n2 ' (35)

The parameters al through aJ are dimensionless material constants, whereas fc represents
uniaxial compressive strength of the brick. The function g«(}), eqn (34), can be selected in
the form

( ~(I+a)-...I(1-a»Kg(O) = y\I-r-U/ " K=I-Koe- K,IQ,-lIJ,) (36)
K~-~+(l-K) J(1-a sin 3()

which satisfies g(Tt/6) = I. g( - (Tt/6» = K and for a = 0.999 guarantees convexity for
K> 0.56.

Consider now the response of the bed joints. Assuming that joints are elastoplastic,
the components of [D(2l], eqn (2), can be derived from the standard plasticity formalism
based on the existence of the yield and plastic potential functions

(37)

where" is a scalar parameter recording the history of plastic deformation, i.e. " = ,,{ (e12
)),,}.

In particular, the properties of the mortar can be described by one of the existing
formulations applicable to brittle-plastic materials [see e.g. Chen and Han (1988) and
Pietruszczak el al. (1988)].

By inspecting the geometry of typical structural panels, it is evident that the thickness
of the bed joints is small compared with other dimensions. In such a case, the analysis may
be simplified by assuming both expressions (37) in the functional form

f = J«(1{/j) 2.j.:'(;Sf)i - Jl(aj2j +c) = 0

'" = J«(1\ij)-2 +(;j~)2 - fiaW = const. (38)

which is analogous to Coulomb friction law. In eqn (38), Ji is a constant whereas Jl = Jl(~),

where ~ is a suitably chosen hardening parameter. In particular, one can select

(39)

where Jlo. Jlr and a are material constants. Equations (38) and (39) are sufficient to define,
in a unique manner. the components of [D(2)]. eqn (2), by following a routine plasticity
procedure.

Numerical examples
In order to verify the performance of the proposed framework, an extensive numerical

study was undertaken. In particular, a series of in-plane biaxial compression-tension and
compression-eompression tests was simulated for different orientations of the set of bed
joints relative to the loading configuration. The analysis was carried out assuming the brick
dimensions as 215 mm x 65 mm and the thickness of the joints as 10 mm. The following
material parameters were chosen:

Brick:

Mortar:

E~ = 14.700 MPa, \'~ = 0.16. fc = 15.3 MPa, It = 1.2 MPa

Em = 7,400 MPa. Vm = 0.21,

Jlr = 0.73, Jlo = 0.3 Jlr. fi =0.2Jlr. c = 0.78 MPa, a = 0.001.
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The material constants describing the response in the elastic range were assumed after Ali
and Page (1989). The same reference was used to estimate the values of the last set of
parameters. pertaining to the elastoplastic behaviour of mortar. The choice of Jlo. j1 and :x
has been somewhat arbitrary due to the limited experimental information.

Figure 5 shows a set of failure envelopes obtained from the simulation of a series of
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in·plane biaxial compression-tension tests. The loading process involved a number of
trajectories corresponding to a constant compressive-tensile stress ratio (i.e. 0, 0.25, 0.5,
0.75, 1.2.5. 10,30, 00). The simulations were successively repeated for different orientations
of bed joints relative to the direction of the tensile stress (the angle p, ranging from 0° to
90°). Figure 5, apart from defining the set of failure envelopes, provides direct information
on the failure mode pertaining to each individual loading history. For low values of p(i.e.
fJ = 0° and p= 22S) the collapse of the brickwork is solely induced by the brittle failure
of bricks. For 45 0

) < P< 78.75°, the predominant mechanism is the failure of the bedjoints.
whereas for P= 33.75" and p = 90° both modes are possible depending on the actual stress
ratio.

Figure 6 presents the evolution of uniaxial compressive and tensile strength of the
brickwork with varying orientations of the bed joints. The results, which are extracted from
Fig. 5. indicate that the ultim,lte strength (both in compression and tension) is the highest
for low values of II. i.e. when the failure of masonry is induced by brittle rupture of bricks.
As II increases a transition in the failure mode takes place which prompts a drastic reduction
in the uniaxial strength. The lowest value corresponds to P~ 60° (bed joints failure).

The results shown in Figs 5 and 6 describe the conditions at failure only, i.e. identify
the maximum stress ratio which can be attained for a given stress history. For each loading
case. complete stress-strain characteristics are obtained by integration of the constitutive
law (19). As an illustration. one such characteristic, corresponding to fJ = 45° and the stress
ratio of five. is presented in Fig. 7. A complete deformation history. both on a macroscale
and for all the individual constituents. is recorded. Here, the failure of the masonry panel
is induced by a ductile failure (shearing) of the bed joints.
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Fig. 7. Material characteristics corresponding to biaxial compression-tension test (13 = 45"; stress
ratio 5.0).
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The results shown in Fig. 8 correspond to a series of in-plane biaxial compression
compression tests. The loading program was analogous to that for compression-tension
and involved a number of stress trajectories at constant vertical to horizontal stress ratio.
In this case, the predominant failure mechanism is associated with the brittle failure of the
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brick matrix. The failure of bed joints is recorded only for some cases involving extremal
values of the stress ratio.

The last aspect of the present analysis is the evaluation of the influence of head joints
on the macroscopic failure. The predictions shown in Figs 5-8 have all been based on the
assumption that the head joints are linearly clastic. This assumption may not be quite
adequate as certain stress trajectories may result in the failure of head joints. Figure 9 shows
the predictions for two chosen biaxial tests obtained for the case when the head joints arc
treated as in/illed. Comparing both solutions. i.e. for clastic and infilled head joints, it is
evident that the conditions at failure arc only marginally affected by the treatment of head
joints. In fact, when the /~lilure is initiated in bed joints, the predictions are virtwilly the
same. only when the bricks fail, the predictions show some degree of sensitivity.

Finally, it should be stressed that the numerical analysis presented here is, in fact. of
a qU.llitative nature as no comparison to the experimental data has been provided. The
reason is that the experimental reports are usually very fragmentary and there is no
comprehensive study giving the adequate information required for quantitative predictions.
It should be noted however that the qualitative trends presented here. in the context of both
compression-tension and compression-eompression tests, arc in a close agreement with
experimental results reported by Page (1981.1983).

5. CONCLUSIONS

A mathematical formulation has been presented for describing the average properties
ofstructural masonry. The approach has been derived from the framework of the mechanics
of composite media. The proposed constitutive law (19) relates, in a unique manner, the
stress rate a to strain rate Ii averages. Their local counterparts arc derived from the
corresponding global measures by means of structural matrices whose components are
functions of properties of both constituents and their volume contributions. The framework
can be incorporated into existing numerical packages to analyze masonry panels ofarbitrary
geometry. This is feasible providing the characteristic dimension of the elementary volume
is much greater than the predominant dimension of the masonry unit.

It has been shown that in the elastic range the brickwork can be considered as an
orthotropic medium. The values ofelastic constants are strongly influenced by the properties
and the thickness of the mortar joints. The failure mechanism consists of a formation of
macrocracks in brick matrix or a ductile/brittle failure of the bed joints. The actual failure
mode is a function of the imposed loading history. The properties of the head joints have
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a very limited effect on the macroscopic failure. Thus. for practical purpose. the head joints
may be assumed as isotropic linearly elastic.
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